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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space

vehicles. Accordingly, criteria are being developed in the following areas of technology:

Environment

Structures

Guidance and Control

Chemical Propulsion.

Individual components of this work will be issued as separate monographs as soon as

they are completed. A list of all previously issued monographs in this series can be

found on the last page of this document.

These monographs are to be regarded as guides to design and not as NASA

requirements, except as may be specified in formal project specifications. It is

expected, however, that the criteria sections of these documents, revised as experience

may indicate to be desirable, eventually will become uniform design requirements for

NASA space vehicles.

This monograph was prepared under the cognizance of the Langley Research Center.

The Task Manager was A. L. Braslow. The authors were V. I. Weingarten and P. Seide

of the University of Southern California. A number of other individuals assisted in

developing the material and reviewing the drafts. In particular, the significant

contributions made by E.H. Baker of North American Rockwell Corporation;

C.D. Babcock, Jr., of California Institute of Technology; R. F. Crawford of Astro

Research Corporation; J. B. Glassco of McDonnell Douglas Corporation; A. Kaplan of

TRW Systems; M.H. Kural of Lockheed Missiles & Space Company; J. Mayers of

Stanford University; and J. P. Peterson of NASA Langley Research Center are hereby

acknowledged.

Comments concerning the technical content of these monographs will be welcomed by

the National Aeronautics and Space Administration, Office of Advanced Research and

Technology (Code RVA), Washington, D.C. 20546.
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BUCKLING OF THIN-WALLED
TRUNCATED CONES

1. INTRODUCTION

Structural components are said to be unstable under static loading when infinitesimal

load increases or other small disturbances induce the structure to change from one

equilibrium configuration to another of a different character. For some structures and

loadings, the two configurations may differ only slightly, and large changes of shape

may therefore develop gradually with successive increases in load. In this case, the load

at which initial buckling occurs is not really significant. Generally, a more significant

load is the ultimate load of the structure, which may be reached when the material fails

plastically or when the structure collapses. For other structures and loadings, however,

the change from one equilibrium configuration to another may be of considerable

magnitude, and the transition is extremely rapid. This rapid initial buckling usually

causes the structure to lose its capacity to sustain further increases in load, or it causes

such large deformations that the structure is rendered unsafe for further use.

The primary design problem is the prevention of buckling which leads to undesirable

configurations in particular, collapse. The magnitude of the critical static load of a

structure generally depends on its geometric proportions, the manner in which it is

stiffened, the manner in which it is supported, the bending and extensional stiffnesses

of its various components, or other reasonably well-defined characteristics. For

thin-walled shell structures, less certain characteristics, such as small deviations of the

structure from its nominal unloaded shape, may also have quite important effects on

the load at which buckling will occur. Other factors that affect buckling, such as

cutouts, nonuniform _tiffnesses, and variation of loading with time,are not considered

in this monograph.

This monograph recommends practices for predicting buckling of uniform stiffened

and unstiffened circular conical shells under various types of static loading and suggests

procedures that yield estimates of static buckling loads which are considered to be

conservative. The buckling of cylindrical shells and shells of double curvature will be

treated in separate monographs.

Estimation of design loads for buckling involves the use of the ultimate design factor.

Considerations involved in selecting the numerical value of this factor will be presented

in another monograph.



2. STATE OF THE ART

Many studies have been conducted of the buckling of conical shells under various

loading conditions. Knowledge of the elastic stability of conical shells, however, is not

as extensive as that of cylindrical shells. While the behavior of the two types of shells

appears to be similar, significant differences in experimental results remain

unexplained. Frequently, there are insufficient data to cover the wide range of

conical-shell geometric parameters. In addition, some important loading cases and the

effects of edge conditions remain to be studied. These problems can be treated by

digital computers. A program for shells with uniform wall stiffnesses under

axisymmetric loading is given in reference 1; reference 2 provides a program for shells

with axisymmetric geometric properties but asymmetric loadings.

In spite of these handicaps, design criteria can be obtained by combining available

theoretical and experimental data on conical shells with experience gained from studies

of cylindrical shells. The designer is, however, advised to be alert to new developments

in shell-stability analysis to put improved procedures to immediate use. The

recommendations given in this monograph will be modified as more theoretical and

test data become available.

3. CRITERIA

3.1 General

Structural components consisting of thin, curved isotropic or composite sheet, with or

without stiffening, shall be so designed that (1) buckling that results in collapse of the

structural components will not occur from the application of design loads, and

(2) buckling deformations resulting from limit loads will not be so large as to impair

the function of the structural component or nearby components nor so large as to

produce undesirable changes in loading.

3.2 Guides for Compliance

Design loads for buckling are considered to be any combination of ground or flight

loads, including loads resulting from temperature changes, that cause compressive

inplane stresses (multiplied by the ultimate design factor) and any load or load

combination tending to alleviate buckling (not multiplied by the ultimate design

factor). For example, external pressure loads or torsional loads should be increased by

the design factor, but internal pressure loads should not.



Suitabletestsarerequiredof representativestructuresunderconditionssimulatingthe
designloadswhenminimumweightis a dominantfactor or whencutouts,elasticend
supports,or otherspecialproblemsoccurin thedesign.

4. RECOMMENDED PRACTICES

4.1 Scope

Within the limitations imposed by the state of the art, acceptable procedures for the

estimation of critical loads on conical shells are described in this section. The

important problems are indicated and the source of the procedures and their

limitations are discussed. Where the recommended procedure is complex and is suitably

defined in all its detail in a readily available reference, it is merely outlined. Where

practicable, a summary of the procedure is given.

4.2 Isotropic Conical Shells

The following pages present recommended design procedures for isotropic conical

shells under such loading conditions as axial compression, bending, uniform

hydrostatic pressure, and torsion, along with those of combined loads.

4.2.1 Axial Compression

Buckling and collapse loads coincide for conical shells under axial compression. There

is considerable disagreement between experimental loads and the loads predicted by

theory. These discrepancies have been attributed to the effects of imperfections of the

structure and of edge-support conditions different from those assumed in the analysis,

as well as to shortcomings of the small-deflection theory used.

A theoretical analysis (ref. 3) indicates that the critical axial load for long conical shells

can be expressed as

227rEt 2 cos a
Pcr= 7 (1)

,,/3(1 -- /a_)

with the theoretical value of q, equal to unity. Experiments (refs. 4 and 5) indicate that

within the range of the geometries of the tested specimens there is no apparent effect

of conical-shell geometry on the correlation factor. Therefore, 'y can be taken as a

constant. At present, 3' is recommended to be taken as

3



= 0.33 (10 ° < a < 75 ° ) (2)

which gives a lower bound to the experimental data. Buckling-load coefficients for

cone semivertex angles greater than 75 ° must be verified by test because experimental

data are not available in this range. Compressive buckling coefficients for equivalent

cylindrical shells can be used for cones with semivertex angles less than 10°, for which

little or no experimental data are available. The recommended equivalent cylinder has

the same wall thickness as the cone and a length and radius equal to the slant length, L,

and average radius of curvature, _, of the cone, respectively.

No studies have been published on the compressive buckling of conical shells in the

yield region. Because the nominal stress level in a conical shell varies along its length,

the effects of plasticity in conical shells are likely to differ from those in cylindrical

shells. A conservative estimate of plasticity effects in conical shells could be obtained,

however, if the reduction factors for cylindrical shells are used. The value E in

equation (1) should be replaced by the value r_E (ref. 6) where

EsecEta n )½
r/ = (3)

E

The secant and tangent moduli should correspond to the maximum membrane

compressive stress

Omax = 2
2zrpl t cos a

(4)

4.2.2 Bending

For unpressurized conical shells in bending, buckling and collapse loads coincide.

Although no theoretical results are available for this problem, a load-correlation

parameter is suggested by the following reasoning.

Reference 7 shows that in theory the predicted buckle wavelength for cylinders in

bending is small, and that the maximum compressive bending stress should be

approximately equal to the critical axial compressive stress. For conical shells in axial

compression, reference 5 indicates that the critical local meridional stress is equal to

the critical compressive stress of a cylinder having the same wall thickness and the same

4



local radiusof curvature.It isalsoknownthat stressesin conesunderbendingdecrease
in the longitudinaldirectionat amuchfasterratethando thecorrespondingstressesin
axiallycompressedcones.

It thereforeappearsreasonableto hypothesizethat the small-deflectiontheory for
conical shellsin bendingwould predict that buckling occurswhen the maximum
compressivestressat or near the small end of the cone is equal to the critical

compressive stress of a cylinder having the same wall thickness and the same local

radius of curvature. The buckling moment can thus be assumed to be given by

lrEt 2 2
r I COS (_

Mcr = q_ (5)

with the theoretical value of "t equal to unity.

In the only available experimental study (ref. 8), use is made of a number of specimens

about equal to the number of conical shells subjected to axial compression, but the

study covers a much more restricted range of geometrical parameters. The

experimental data appear to verify the load-correlation parameter given by

equation (5) and indicate that the coefficients for conical shells in bending are larger

than those for axially compressed conical shells. This is also the case for cylindrical

shells. The data are insufficient to indicate any other trends. It is therefore

recommended that the coefficient 7 be taken as the constant value

"r = 0.41 (10 ° < a < 60 ° ) (6)

Buckling-load coefficients for cone semivertex angles greater than 60 ° must be verified

by test because experimental data are not available in this range. Buckling coefficients

for equivalent cylindrical shells in bending can be used with semivertex angles less than

10 °. For conical shells for which plasticity effects are significant, the correction

suggested for conical shells in axial compression may be used; i.e., E in equation (5)

may be replaced by 7/E, given by equation (3).

4.2.3 Uniform Hydrostatic Pressure

The theoretical buckling pressure of a conical shell which buckles into several

circumferential waves (n > 2) can be expressed (ref. 9) in the approximate form

0.92E"t

Per (L) (__)s (7)



The theoretical value of 7 is greater than unity and is insensitive to geometric

parameters other than the ratio of the end radii of the conical shell for a wide range of

cone geometries. With 7 equal to unity, equation (7) yields a buckling pressure

identical to the approximate hydrostatic buckling pressure of a circular cylindrical shell

(ref. 10) with a length equal to the slant length of the conical shell, with a radius equal

to the average radius of curvature _ of the conical shell, and with the same wall

thickness. Experiments (refs. 11 and 12) show a relatively wide scatter band for the

value of 7 but indicate that the constant value

3' = 0.75 (8)

should provide a lower bound for the available data.

For conical shells which buckle in the plastic range, the plasticity correction for

moderate-length cylindrical shells may be used for the range of the conical shell

geometries considered. The procedure here is to replace Young's modulus E in

equation (7) by r_E (ref. 6), where

3 Etan 7
Ese----_c Etan _ + (9)

77= E 4

and the moduli correspond to the maximum circumferential compressive stress at the

large end of the conical shell:

Omax = Pcr (_) (10)

Plasticity factors for the biaxial-stress state of hydrostatic pressure are unavailable. For

lack of better information, the plasticity factor given by equation (9) may be used.

4.2.4 Torsion

An approximate equation for the critical torque of a conical shell (ref. 13) is

Tcr = 52.87D_-_-) _-i")
(11)

6



where

Ir = r_cosa{l+[2(l +-_t)]7- [1 (l+rl/j-5-_rr (lla)

r

The variation of the bracketed function with the cone taper ratio 1 - _is plotted in

figure 1. The theoretical value of 3' is unity, r

1.0

0,8

0.6

r

r 2 cos (3,

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0

r 1
1 -- --

r2

Figure 1
Variation of radiusparameterwith taperratio

Theory and experiment agree for cones in torsion about as closely as they agree .for

cylinders in torsion (refs. 8, 12, 14, and 15). For design purposes, it is recommended

that the torsional-moment coefficient in equation (11 ) be taken as

3" = 0.67 (12)

No data are available for the plastic buckling of conical shells in torsion. The plasticity

factor used for cylindrical shells in torsion should, however, give conservative results.

7



Thus,Young'smodulus,E, is replacedby the secantmodulus,Esec,in equation(11).
Thesecantmodulus,Esec,is obtainedfrom auniaxialstress-straincurvefor astresso N

o N = 2rcr (13)

where the value of rcr is the critical shear stress at the small end of the cone, given by

Tcr

%r - (14)
2rr r(t

4.2.5 Combined Loads

4.2.5.1 Pressurized Conical Shells in Axial Compression

Theory for predicting buckling of internally pressurized conical shells under axial

compression (ref. 16) differs from that for cylindrical shells in two respects. First, the

axial load-carrying capacity is a function of internal pressure, and exceeds the sum of

the load-carrying capacity of the unpressurized shell and the pressure load at the small

end of the cone. Second, results of analyses for conical shells indicate that edge

conditions at the small end have significant effect on the axial load-carrying capacity.

The results are independent of edge conditions at the large end for long cones. No

general expression can be given for the theoretical interaction curves.

Results of experiments on pressurized cones generally agree with theory when the

internal-pressure parameter E\t cos a] is of the order of unity or greater. For
lower values of the internal-pressure parameter, there is a transition from those values

to the experimental results for unpressurized, or lightly pressurized, conical shells

which buckle at loads considerably below the theoretical values.

There are, however, insufficient data to warrant use of the entire increase in

load-carrying capacity of internally pressurized conical shells in desizn. It is therefore

recommended that the critical axial compressive load for a pressurized conical shell be
2

determined by adding the pressurization load at the small end of the cone rrr _ p to the

compressive buckling load of the conical shell. Then

Pcr = (27rEt 2 cos2a) + rrr_p (15)



Theunpressurizedcompressive-bucklingcoefficient_,isequalto 0.33andtheincrease
in bucklingcoefficientA7 for the equivalentcylindricalshellis givenin figure2. The
critical axial load maybeincreasedabovethevaluegivenin equation(15),however,if
the increaseissubstantiatedby test.
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Figure2
Increasein axial-compressivebuckling-stresscoefficientof conicalshellsdue
to internal pressure

4.2.5.2 Pressurized Conical Shells in Bending

As in the case of unpressurized conical shells subjected to pure bending, no theory has

yet been developed for pressurized conical shells under bending. Some experiments

using Mylar as the specimen material can be found in reference 8. The lack of data for

materials other than Mylar does not permit the effects of plasticity to be assessed. For

conservative design, therefore, the design moment of the pressurized conical shell is

written as

= -- + A3'
Mpress V/3( 1 U2)

pTrr_
rrErl (tcosa) 2 + -- (16)

2



Theunpressurizedcompressivebucklingcoefficientq¢is equalto 0.41andtheincrease
in buckling coefficientA,y for the equivalent cylindrical shell can be obtained from

figure 2. The design-critical moment for a pressurized conical shell may be increased if

the increase is substantiated by test.

4.2.5.3 Combined Axial Compression and Bending for

Unpressurized and Pressurized Conical Shells

Some experimental interaction curves have been obtained for unpressurized and

pressurized conical shells under combined axial compression and bending (ref. 8).

These investigations indicate that the following straight-line interaction curve for

conical shells is adequate for design purposes:

R c + R b = 1 (17)

where

P
R c = -- (18a)

Pcr

and

Rb _ M (18b)
Mcr

For equations (18a) and (18b),

P = applied compressive load

Pcr critical compressive load for cone not subjected to bending,

obtained from equations (1) and (2) for unpressurized shells, and

from equation (15) for pressurized shells

M = applied bending moment

Mcr critical moment for cone not subjected to axial compression, as

obtained from equations (5) and (6) for unpressurized shells, and

from equation (16) for pressurized shells.

10



If actualtest valuesof PcrandMcrareused,the straight-line interaction curve may no

longer be conservative and the entire interaction curve must be substantiated by test.

4.2.5.4 Combined External Pressure and Axial Compression

For the conical shell subjected to combined external pressure and axial compression, a

theoretical solution (ref. 17) predicts that the interaction curve for these loads deviates

slightly from a straight line, with the amount of deviation depending primarily on the

taper ratio of the cone. The adequacy of a straight-line interaction curve is also

indicated by the few experiments reported in reference 8. Thus, the relationship

Rc + Rp = 1 (19)

is recommended for design purposes. In equation (19)

P
Rp = (20)

Pcr

where Pcr is given by equations (7) and (8), and R c is given by equation (1 8a).

For conical shells that buckle under combinations of external pressure and axial load

so that the compressive load is near the critical axial compressive load, buckling and

collapse are synonymous. As the axial load decreases and the pressure increases,

experiments (ref. 11) indicate that buckling and collapse loads no longer coincide, but

differ by amounts which depend on the semivertex angle of the conical shell. When the

external buckling pressure is applied, for example, the axial load can be increased to a

significant percentage of the critical axial compressive load before the shell collapses.

Similarly, with no axial load applied, the applied external pressure can be considerably

greater than the buckling pressure before the conical shell collapses. The collapse-load

results were obtained for Mylar conical shells, however, and cannot be considered

representative of those for metal cones. Metal cones would probably collapse at

considerably lower combined loads because of the difference in plasticity properties of

the materials.

4.2.5.5 Combined Torsion and External Pressure

or Axial Compression

Theoretical analysis for conical shells under torsion and external hydrostatic pressure

(ref. 18) indicates that the shape of the interaction curve depends on the value of the

taper ratio of the cone. The limited experimental data available (refs. 18 and 19)

indicate, however, that the scatter about these theoretical curves is considerable. A

lower bound for the data is a straight-line interaction curve. For design purposes, the

recommended interaction formula is

11



Rt + Rp = 1 (21)

with

T (22)
Rt=

Tcr

where Tcr is given by equations (11) and (12), and Rp is given by equation (20).

For conical shells under torsion and axial compression (ref. 15), the theoretical

interaction curve is nearly a straight line, while the average experimental interaction

curve is parabolic in shape. The scatter of the test results, however, is such that a

lower-bound straight-line interaction formula is recommended for design. Thus, for

conservative design

R t + R c -- 1 (23)

where Rt is given by equation (22) and R c by equation (18a).

4.30rthotropic Conical Shells

The theory of buckling of orthotropic conical shells is valuable in determining

adequate buckling criteria for shells which are geometrically orthotropic because of

closely spaced meridional or circumferential stiffening, as well as for shells constructed

of a material whose properties differ in the two directions. An extension of the

Donnell-type isotropic conical shell theory to conical shells with material orthotropy is

given in reference 20, while buckling of conical shells with geometric orthotropy is

considered in reference 21. Numerical results are limited to only a few values of the

many parameters, but these provide the basis for tentative generalizations. Few

experiments have been conducted. Following are the design recommendations based on

the limited data available.

4.3.1 Uniform Hydrostatic Pressure

4.3.1.1 Constant-Thickness Orthotropic Material

A limited investigation (ref. 22) indicates that the relationship between the theoretical

buckling pressures of an orthotropic conical shell and of the so-called equivalent

orthotropic cylinder is similar to that for the buckling pressures of an isotropic conical

shell and of the equivalent isotropic cylinder. In both cases the equivalent cylinder is

12



definedasonehavingalengthequalto theslantlength,L, of theconicalshell,aradius
equalto theaverageradiusof curvature,P, of the conical shell, and the same thickness.

Thus, the theoretical hydrostatic buckling pressures for supported moderate-length

orthotropic conical shells (refs. 23 and 24) can be expressed as

s

0.86"/ 1 a (__) (._.)
4 _ t 2 (24)Pcr - _3 Es4 EO

( 1-/as/a 0 )4

which reduces to the corresponding expression for the isotropic cone when we put

E s = E 0 = E

/as =/a 0 =/a (25)

The theoretical value of _/ is greater than unity, and depends on the ratio of end radii,

as for isotropic cones.

Only limited experimental data exist for conical shells constructed of an orthotropic

material (ref. 25). In the absence of a more extensive range of test results, it is

recommended that the value of the correlation coefficient _/be taken as 0.75 for both

orthotropic and isotropic shells.

4.3.1.2 Stiffened Conical Shells

The stability of conical shells stiffened by rings under uniform hydrostatic pressure has

also been investigated (refs. 21 and 26). In these investigations, all rings were assumed

to have the same cross-sectional shape and area but could have variable spacing. The

approximate buckling formulas given in these references are not recommended for use

in design until a larger amount of substantiating test data become available.

4.3.2 Torsion

4.3.2.1 Constant-ThicknessOrthotropicMaterial

The investigation reported in reference 27 indicates that the theoretical buckling

torque of an orthotropic conical shell is approximated by that for an equivalent

orthotropic cylinder having a length equal to the height, I_, of the conical shell, and

having the same thickness and radius given by equation (11 a).

13



Thevariationof r with 1-r_ isplottedin figure1.
r2cosa r2

The critical torque of a moderate-length orthotropic conical shell may then be

approximated by the expression

5 3 5 1

E0g Es ._ r2t • 7

(1 --/SOPS )8

A reduction factor of 7 -- 0.67 (the value given for isotropic conical shells) is

recommended. The few data points available for fiberglass-reinforced epoxy conical

shells (ref. 25) yield a larger value of % but fall within the scatter band for the

isotropic shell of constant thickness.

4.3.2.2 Ring-Stiffened Conical Shells

Although no accurate theoretical calculations have been made for ring-stiffened conical

shells in torsion, a few tests (ref. 25) indicate that when the rings are equally spaced

and have the same cross-sectional shape and area, a procedure similar to that for the

materially orthotropic conical shell will yield adequate results. The critical torque of

such a ring-stiffened conical shell may thus be approximated by the critical torque of a

ring-stiffened cylinder having the radius, length, and thickness described above. The

critical torque of a ring-stiffened cone with uniformly spaced rings is then given by

5 1

Er2t (t; r(__)_- _sTcr = 4.57 7 s (1 +r t0) 8 (27)

(1 -- _s#o ) a

where (fig. 3)

r/o = 12 1-- _ + -- + 12 (28)
(1 #2) _ L0t 3 Lot

and the factor "r is recommended to be taken equal to 0.67. The few available test

results also indicate a larger value of % but these again fall within the scatter band for

the isotropic conical shell of constant thickness.
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Figure3
Notation for ring-stiffenedconicalshells

4.4 Sandwich Conical Shells

Neither theoretical nor experimental data are available for sandwich conical shells. If,

however, the sandwich core is resistant to transverse shear so that its shear stiffness can

be assumed to be infinite, the previous results for isotropic and orthotropic conical

shells may readily be adapted to the analysis of sandwich conical shells by the

following method.

4.4.1 Isotropic Face Sheets

If the core is assumed to have infinite transverse shear stiffness and no load-carrying

capacity in the meridional or circumferential directions, the analysis for isotropic

conical shells of constant thickness may be used for isotropic sandwich conical shells of

constant thickness. An equivalent modulus and thickness must be defined for the

sandwich shell. The face sheets may be of different thicknesses and of different

materials, subject to the restriction that the Poisson's ratio of the two materials is

identical. If the stretching and bending stiffnesses of such an isotropic sandwich shell

15



are equated to the stretching and bending stiffnessesof an equivalent
constant-thicknessisotropicshellhavingthe sameneutralsurfacedimensions,wehave

Et = Ett_ + E2t2 (29a)

_ (_') 3 h 2

12 1 1
+ (29b)

Eltl E2t2

Then the modulus and the thickness of the equivalent constant-thickness isotropic shell

are

,fi-_ h
_ = (30a)

E1 tl _f E2t2--+
E2 t2 Ej tl

Elt I + E2t 2
= (30b)

The buckling loads of the isotropic sandwich shell may now be taken as the buckling

loads of the equivalent isotropic shell of constant thickness as listed below.

Load Refer to Section

Axial compression 4.2.1

Bending 4.2.2

Uniform hydrostatic pressure 4.2.3

Tor sion 4.2.4

Pressurized conical shells

in axial compression 4.2.5.1

i6



Pressurizedconicalshells
in bending 4.2.5.2

Combinedaxialcompressionand
bendingfor unpressurizedand
pressurizedconicalshells 4.2.5.3

Combinedexternalpressure
andaxialcompression 4.2.5.4

Combinedtorsionandexternal
pressureor axialcompression 4.2.5.5

In the absenceof experimentaldata, thereductionor correlationfactorsfor isotropic
shellsof constantthicknessarerecommendedfor isotropicsandwichshells.

4.4.20rthotropicFaceSheets

If the core is assumed to have infinite transverse shear stiffness and no load-carrying

capacity in the meridional or circumferential directions, the available results for conical

shells of constant-thickness orthotropic material may be used for sandwich conical

shells having orthotropic faces. The face sheets may be of different thicknesses but of

the same orthotropic material so long as their principal axes are oriented in the same

direction. The same procedure as for sandwich shells having isotropic face sheets leads

to the following thickness and material properties of the equivalent materially

orthotropic conical shells of constant thickness:

T = l_h (31a)

Es E0 G t l + t2

E s E 0 G i-
(31b)

Us 30
= - 1 (31c)

/as /a0

The buckling load of the orthotropic sandwich conical shell is then the buckling load

of the equivalent conical shell of orthotropic material having constant thickness. The

17



reduction or correlation factors for isotropic shells of constant thicknessare
recommendedfor usefor sandwichshellswith orthotropicfacesheets.

4.4.3 Local Failure

Thus far, only overall buckling has been considered as a criterion of failure. Other

modes of failures are possible, however. For honeycomb-core sandwich shells, failure

may occur because of core crushing, intracell buckling, and face wrinkling. The use of

relatively heavy cores (5 > 0.03)will usually insure against core crushing. Lighter cores

may prove to be justified as data become available. No studies have been conducted

that predict localized buckling failures under stress states that are a function of

position. If we assume, however, that the stress state varies only slightly over the

buckled region, the following approximate equations developed for cylindrical shells

can be used to predict failure from intracell buckling and face wrinkling of heavy

honeycomb-core sandwich conical shells with equal-thickness face sheets under

uniaxial loading. For intracell buckling

o s = 2.5E R (32)

where S is the core cell size expressed as the diameter of the largest inscribed circle and

4EfEtan

(jT  tao)
(33)

where Ef and Eta n are the elastic and tangent moduli of the face-sheet material. If

initial dimpling is to be checked, the equation

Os = 2.2E R (34)

should be used. The sandwich will still carry loads if initial dimpling occurs. For

wrinkling
1

o s = 0.50 (EsecEzGsz)3 (35)

where E z is the modulus of the core in a direction perpendicular to the core and Gsz is

the transverse shear modulus of the core. If biaxial compressive stresses are applied to

the sandwich, then the coefficients of equations must be reduced by the factor
1

(1 + f3)-_ where f is the ratio of minimum to maximum principal compressive

stress in face sheets.
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Wrinklingandintracell-bucklingequationswhichconsiderstrengthof bond,strengthof
foundation,and initial wavinessof the facesheetsare givenin references28, 29,
and30.

The plasticity correctionfactor givenby equation(3) for isotropicconicalshellsin
axial compressionmaybeappliedalsoto isotropicsandwichconicalshells.Thefactor
is applicableto sandwichcylinderswith stiff coresandbecomessomewhatconservative
astheshearstiffnessof thecoreisdecreased(ref. 31).

19





REFERENCES

, Almroth, B. O.; Bushnell, D.; and Sobel, L. H.; Buckling of Shells of Revolution

With Various Wall Constructions. Vols. I, II, and Ilk NASA CR-1049-1051,

1968.

2. Ball, R.E.: A Geometrically Nonlinear Analysis of Arbitrarily Loaded Shells of

Revolution. NASA CR-909, 1968.

3. Seide, P.: Axisymmetric Buckling of Circular Cones Under Axial Compression. J.

Appl. Mech., vol. 23, no. 4, Dec. 1956, pp. 625-628.

, Weingarten, V. I.; Morgan, E.J.; and Seide, P.: Elastic Stability of Thin-Walled

Cylindrical and Conical Shells Under Axial Compression. AIAA J., vol. 3, no. 3,

Mar. 1965, pp. 500-505.

. Hausrath, A. H.; and Dittoe, F.A.: Development of Design Strength Levels for

the Elastic Stability of Monocoque Cones Under Axial Compression. Collected

Papers on Instability of Shell Structures, NASA TN D-1510, 1962, pp. 45-56.

6. Gerard, G.; and Becker, H.: Handbook of Structural Stability. Part III, Buckling

of Curved Plates and Shells. Supplement to NACA TN 3783, 1957.

7. Seide, P.; and Weingarten, V. I.: On the Buckling of Circular Cylindrical Shells

Under Pure Bending. J. Appl. Mech., vol. 28, no. 1, Mar. 1961, pp. 112-116.

. Seide, P.; Weingarten, V. I.; and Morgan, E.J.: Final Report on Development of

Design Criteria for Elastic Stability of Thin Shell Structures. Rept.

TR-60-0000-19425 (AFBMD-TR-61-7), Space Technology Laboratories,

Dec. 31, 1960.

. Seide, P.: On the Buckling of Truncated Conical Shells Under Uniform

Hydrostatic Pressure. Proc. IUTAM Symposium on the Theory of Thin Elastic

Shells, Delft, The Netherlands, Aug. 24-28, 1959, North-Holland Publishing Co.,

The Netherlands, 1960, pp. 363-388.

21



10. Batdorf, S.B.: A Simplified Method of Elastic-StabilityAnalysis for Thin
CylindricalShells.NACARept.874,1947.

11. Weingarten,V. I.; andSeide,P.: ElasticStabilityof Thin-WalledCylindricaland
ConicalShellsUnderCombinedExternalPressureandAxialCompression.A1AA
J.,vol. 3, no.5, May1965,pp.913-920.

12. Singer,J.; andEckstein,A.: RecentExperimentalStudiesof Bucklingof Conical
ShellsUnderTorsionandExternalPressure.Fifth IsraelConference,Aviationand
Astronautics,Feb.1963,pp. 135-146.

13. Seide,P.: On the Bucklingof TruncatedConicalShellsin Torsion. J. Appl.
Mech.,vol. 29,no. 2,June1962,pp. 321-328.

14. Weingarten,V. 1.: Stability of Internally PressurizedConical Shells Under
Torsion.AIAA J.,vol.2, no. 10,Oct. 1964,pp. 1782-1788.

15. Berkovits,A.; and Singer,J.: Buckling of UnstiffenedConicalShellsUnder
CombinedTorsionandAxial CompressionorTension.SeventhIsraelConference,
AviationandAstronautics,Feb.1965,IsraelJournalof Technology,vol.3, no. 1,
1965,pp. 15-24.

16. Seide,P.: On the Stability of Internally Pressurized Conical Shells Under Axial

Compression. Proc. Fourth U.S. National Congress of Applied Mechanics,

University of California Press, Berkeley, California, pp. 761-773, 1962.

17.

18.

Seide, P.: Calculations for the Stability of Thin Conical Frustums Subjected to

External Uniform Hydrostatic Pressure and Axial Loads. J. Aero. Sci., vol. 29,

no. 8, Aug. 1962, pp. 951-955.

Singer, J.; and Baruch, M.: Buckling of Circular Conical Shells Under Combined

Torsion and External Pressure. Topics in Applied Mechanics, Elsevir Publishing

Co., Amsterdam, p. 65, 1965.

19.

20.

Singer, J.: On Experimental Techniques for Interaction Curves of Buckling of

Shells. Experimental Mechanics, vol. 4, no. 9, Sept. 1964, p. 279.

Singer, J.: Donnell-Type Equations for Bending and Buckling of Ortfiotropic

Conical Shells. J. Appl. Mech., vol. 30, no. 2, June 1963, pp. 303-305.

22



21. Baruch,M.; and Singer,J.: GeneralInstability of StiffenedCircular Conical
Shells Under Hydrostatic Pressure.TAE Rept. 28, Technion-IsraelInst. of
Technology,June1963.

22. Singer,J.; and Fersht-Scher,R. Bucklingof OrthotropicConicalShellsUnder
ExternalPressure.Aeron.Quart.,vol. 15,pt. 2, May1964,p. 151.

23. Stein, M.; and Mayers,J.: A Small-DeflectionTheory for CurvedSandwich
Plates,NACARept.1008,1951.

24. Becker,H.; and Gerard,G.' ElasticStability of OrthotropicShells.J. Aeron.
Sci.,vol. 29,no. 5,May1962,pp.505-512,520.

25. Singer,J.: On the Bucklingof UnstiffenedOrthotropicand StiffenedConical
Shells.SeventhInternationalCongressfor Aeronautics,Paris.June14-16,1965.

26. Baruch,M.; Singer,J.; and Marari,O.: Instability of Conical Shells with
Non-Uniformly SpacedStiffenersUnder Hydrostatic Pressure.SeventhIsrael
Conference,AviationandAeronautics,vol. 3, no. 1,Feb. 1965,pp.62-71.

27. Singer,J.; Fersht-Scher,R.; and Betser,A.: Bucklingof OrthotropicConical
ShellsUnderCombinedTorsion and Externalor Internal Pressure.Sixth Israel
Conference,Aviation and Astronautics,IsraelJournalof Technology,vol. 2,
no. 1,Feb.1964,pp. 179-189.

28. Plantema,F.J.: SandwichConstruction,TheBendingandBucklingof Sandwich
, Beams,PlatesandShells.JohnWiley& Sons,Inc., 1966.

29. Yusuff, S.' FaceWrinklingand CoreStrengthin SandwichConstruction.J.Roy.
Aeron.Soc.,vol. 64,no.591,Mar.1960,pp. 164-167.

30. Harris, B.; and Crisman,W.: Face-WrinklingMode of Bucklingof Sandwich
Panels.ASCEJournal,EngineeringMechanicsDivision,EM3,June1965.

31. Peterson,J.P.: Weight-StrengthStudiesonStructuresRepresentativeof Fuselage
Construction.NACATN 4114,1957.

23





NASA SPACE VEHICLE DESIGN CRITERIA

MONOGRAPHS ISSUED TO DATE

SP-8001

SP-8002

SP-8003

SP-8004

SP-8005

SP-8006

SP-8007

SP-8008

SP-8009

S_8010

SP-8011

SP-8012

SP-8014

SP-8015

(Structures)

(Structures)

(Structures)

(Structures)

(Environment)

(Structures)

(Structures)

(Structures)

(Structures)

(Environment)

(Environment)

(Structures)

(Structures)

(Guidance

and Control)

Buffeting During Launch and Exit, May 1964
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September 1965
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Entry Thermal Protection, August 1968

Guidance and Navigation for Entry Vehicles,
November 1968
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